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who did what to whom, when and where?
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PatentAgent
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• Defining a set of roles can be difficult 
• Existing formulations have used different sets
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Frame: Change_position_on_a_scale 
This frame consists of words that indicate the 
change of an Item's position on a scale 
(the Attribute) from a starting point 
(Initial_value) to an end point (Final_value). 
The direction (Path) …
Lexical Units:
…, reach.v, rise.n, rise.v, rocket.v, shift.n, …

Roleset Id: rise.01 , go up

Arg1-: Logical subject, patient, thing rising 

Arg2-EXT: EXT, amount risen

Arg3-DIR: start point

Arg4-LOC: end point

Argm-LOC: medium 

FrameNet
1000+ semantic frames, 

10,000+ frame elements (roles)

PropBank
10,000+ frame files 

with predicate-specific roles

Unified Verb Index, University of Colorado http://verbs.colorado.edu/verb-index/ 
PropBank Annotation Guidelines, Bonial et al., 2010 
FrameNet II: Extended theory and practice, Ruppenhofer et al., 2006 
FrameNet: https://framenet.icsi.berkeley.edu/

http://www.colorado.edu/
http://verbs.colorado.edu/verb-index/
https://framenet.icsi.berkeley.edu/
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• Introduce a new SRL formulation with no 
frame or role inventory

• Use question-answer pairs to model verbal 
predicate-argument relations 

• Annotated over 3,000 sentences in weeks 
with non-expert, part-time annotators 

• Showed that this data is high-quality and 
learnable

This Talk: QA-SRL
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They increased the rent this year .

Given sentence and a verb: 
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Who increased something ? They

They increased the rent this year .

Given sentence and a verb: 

Step 1: Ask a question 
about the verb: 

Step 2: Answer with words 
in the sentence: 

Step 3: Repeat, write as many 
QA pairs as possible …



Our Annotation Scheme
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Who increased something ? They

What is increased ? the rent

When is something increased ? this year

They increased the rent this year .

Given sentence and a verb: 

Step 1: Ask a question 
about the verb: 

Step 2: Answer with words 
in the sentence: 

Step 3: Repeat, write as many 
QA pairs as possible …
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ARG1 ARG4

ARG3

ARG2
The rent rose 10% from $3000 to $3300

??????

???

amount risen

start point

end point

• Depends on pre-defined frame 
inventory 

• Annotators need to: 
1) Identify the Frameset  
2) Find arguments in the sentence 
3) Assign labels accordingly 

• If frame doesn’t exist, create new

The Proposition Bank: An Annotated Corpus of Semantic Roles, Palmer et al., 2005 
http://verbs.colorado.edu/propbank/framesets-english/rise-v.html

Frameset: rise.01 , go up

        Arg1-: Logical subject, patient, 
thing rising 

        Arg2-EXT: EXT, amount risen

        Arg3-DIR: start point

        Arg4-LOC: end point

        Argm-LOC: medium 


Previous Method: Annotation with Frames

http://verbs.colorado.edu/propbank/framesets-english/rise-v.html


Wh-Question Answer

the rentWhat rose ?

10%

$3000

$3300

How much did something rise ?

What did something rise from ?

What did something rise to ?

ARG1 ARG4

ARG3

ARG2
The rent rose 10% from $3000 to $3300

??????

???

amount risen

start point

end point

Our Method: Q/A Pairs for Semantic Relations
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Predicate Argument (Verbal) 
Predicate

Answer

RoleQuestion

Question-Answer Driven SRL 
(QA-SRL)

SRL

Large Role InventoryNo Role Inventory!

Comparing to Existing SRL Formulations
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• No pre-defined roles, few syntactic assumption 
• Can capture implicit arguments 
• Generalizable across domains

Advantages
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• Easily explained 
• No pre-defined roles, few syntactic assumption 
• Can capture implicit arguments 
• Generalizable across domains

Advantages

Limitations • Only modeling verbs (for now) 
• Not annotating verb senses directly 
• Can have multiple equivalent questions

Challenges • What questions to ask? 
• Quality - Can we get good Q/A pairs? 
• Coverage - Can we get all the Q/A pairs?



Outline
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Learning Tasks and Baselines

Data Collection and Analysis

Motivation and Intuition

Future Work and Conclusion

• Annotation Task Design 
• Dataset Statistics 
• Quality Analysis

• Semantic Role Labeling 
• Our Method: QA-SRL
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Given sentence s, target verb v

Annotate all possible question-answer pairs <q,a>
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Given sentence s, target verb v

Annotate all possible question-answer pairs <q,a>

• Question q should start with a wh-word and contain 
the target verb v 

• Answer a should be a phrase from the sentence s. 
Multiple correct answers are allowed.
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Writing Questions
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q 2 WH⇥AUX⇥ SBJ⇥TRG⇥OBJ1⇥PP⇥OBJ2

WH: Who, What, When, Where, Why, How, How much 

AUX: Auxiliary verbs, including negations. i.e. is, might, wo n’t 

SBJ, OBJ1, OBJ2: someone, something, do something, etc.

TRG: Target verb, including inflected forms.

PP: Preposition. i.e. to, for, from, about, etc.



WH* AUX SBJ TRG* OBJ1 PP OBJ2

Who built something

What had someone said

When was someone expected to do something

Where might something rise from

Writing Questions

13
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Annotation Interface
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Annotation Interface
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0

2750

5500

8250

11000

Sentences Verbs QA Pairs

newswire (PropBank) Wikipedia

10,798

4,440

1,959

8,109

3,336

1,241
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Cost and Speed
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0

0.4

0.8

1.2

1.6

Cost per Verb Cost per Sentence

newswire Wikipedia

$1.01

$0.45

$1.57

$0.58

2.25
4.5

6.75
9

Time per Sentence

6min

9min

• Part-time freelancers from upwork.com (hourly rate: $10) 
• ~2h screening process for native English proficiency

http://www.upwork.com


Sample Annotation
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QA-SRL PropBank 
(CoNLL-2009)

Who would play something ? 
the soft-spoken clarinetist / he ARG0: he

What would be played ? 
her favorite tune from the record ARG1: tune

When would someone play something? 
his mother ’s birthday /

Sentence: Clad in his trademark black velvet suit , the soft-
spoken clarinetist announced that . . . and that it was his mother ’s 
birthday , so he was going to play her favorite tune from the 
record . 



Sample Annotation
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QA-SRL PropBank 
(CoNLL-2009)

Who would play something ? 
the soft-spoken clarinetist / he ARG0: he

What would be played ? 
her favorite tune from the record ARG1: tune

When would someone play something? 
his mother ’s birthday /

Sentence: Clad in his trademark black velvet suit , the soft-
spoken clarinetist announced that . . . and that it was his mother ’s 
birthday , so he was going to play her favorite tune from the 
record . 

match

precision 
loss

match
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0

22.5

45

67.5

90

All Roles Core Roles Adjuncts

Precision Recall

63.6

89.886.3

59.9

85.981.4

Core Roles: A0-A5 
Adjuncts: ADV, CAU,DIR, EXT, LOC, MNR, PNC, PRD, TMP

Agreement with PropBank: Results
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• QA Equivalence: Same wh-word + Overlapping answers 
• Agreed QA Pairs: Proposed by at least 2 of the 5 annotators
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• QA Equivalence: Same wh-word + Overlapping answers 
• Agreed QA Pairs: Proposed by at least 2 of the 5 annotators
• Agreed QA pairs by five annotators: 2.6-2.8 QA/verb
• One annotator can recover: 2.2-2.3 QA/verb (80%)



Wh-words vs. PropBank Roles
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Who What When Where Why How HowMuch

ARG0 1575 414 3 5 17 28 2
ARG1 285 2481 4 25 20 23 95
ARG2 85 364 2 49 17 51 74
ARG3 11 62 7 8 4 16 31
ARG4 2 30 5 11 2 4 30
ARG5 0 0 0 1 0 2 0

AM-ADV 5 44 9 2 25 27 6
AM-CAU 0 3 1 0 23 1 0
AM-DIR 0 6 1 13 0 4 0
AM-EXT 0 4 0 0 0 5 5
AM-LOC 1 35 10 89 0 13 11
AM-MNR 5 47 2 8 4 108 14
AM-PNC 2 21 0 1 39 7 2
AM-PRD 1 1 0 0 0 1 0
AM-TMP 2 51 341 2 11 20 10



Outline
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Learning Tasks and Baselines

Data Collection and Analysis

Motivation and Intuition

Future Work and Conclusion

• Question Generation 
• Answer Identification

• Annotation Task Design 
• Dataset Statistics 
• Quality Analysis

• Semantic Role Labeling 
• Our Method: QA-SRL



Question Generation
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Given sentence s and target verb v, predict a set 
of questions that are grammatical and answerable.

Task

In the future, automate part of the annotation 
process, further reduce cost and speed up 
annotation.

Motivation



Question Generation: Basic Idea
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They increased the rent this year .

• Pick a role in the sentence 
• Predict the right pronoun. 
• Fill in the rest of the question.

s =
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They increased the rent this year .

Who increased something ?✓
role not presentWhy was something increased ?✗

wrong pronounWhat increased someone ?✗

• Pick a role in the sentence 
• Predict the right pronoun. 
• Fill in the rest of the question.

s =



Question Generation: Basic Idea
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They increased the rent this year .

Who increased something ?✓
role not presentWhy was something increased ?✗

wrong pronounWhat increased someone ?✗

• Pick a role in the sentence 
• Predict the right pronoun. 
• Fill in the rest of the question.

wrong templateWhen increased someone something ?✗

s =



Question Generation: 2-Step Method
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Step 1: Role/Pronoun Prediction as Multi-label Learning

L ={role:pronoun val | role 2 R}

R ={R0,R1,R2,R2[pp], wh,wh[pp]}
wh 2{Where,When,Why,How,HowMuch}

*Details can be found in paper
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Step 1: Role/Pronoun Prediction as Multi-label Learning

Step 2: Template-based Generation with Abstract Questions

L ={role:pronoun val | role 2 R}

R ={R0,R1,R2,R2[pp], wh,wh[pp]}
wh 2{Where,When,Why,How,HowMuch}

Who increased something ?
WH SBJ Voice OBJ1 OBJ2
R0 / active R1 /

R0:someone R1:something

*Details can be found in paper
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0%

22.5%

45%

67.5%

90%

prec@1 prec@3 prec@5 prec@1 prec@3 prec@5

Grammatical Answerable

40%

53.3%

72%

38.4%

51.3%

66%

82%86%90%

77.2%78.7%
84%

newswire Wikipedia• In question prediction: 2 Question/verb answerable 
• In annotated data: 2.6-2.8 QA/verb
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Given sentence s, target verb v, and question q, 
predict a word in the sentence that answers the 
question q.

Task

In the future, build an end-to-end SRL system 
trained by QA-SRL data. (Analogy to SRL - 
questions:roles, answers:arguments).

Motivation



Answer Identification: Basic Idea
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 Who would increase something ?

The leasing office said they would increase the rent .

Arcs from k-best dependency trees

s =

v = q =increase

Annotated answer spans. Space: 2|s|
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Answer Identification: Basic Idea

27

 Who would increase something ?

The leasing office said they would increase the rent .

Arcs from k-best dependency trees

Ex. of correct predictions: “office”, “leasing”, “they”

Ex. of wrong predictions: “rent”
✓
✗

s =

v = q =increase

Annotated answer spans. Space: 2|s|

Training samples: hs, v, q, o�cei, hs, v, q, theyi Space: |s|
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0

22.5

45

67.5

90

newswire Wikipedia

Random Classifier

82.378.7

26.926.3
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Learning Tasks and Baselines

Data Collection and Analysis

Motivation and Intuition

Future Work and Conclusion
• Generalization 
• Question Suggestion 
• Training a Joint Parser

• Question Generation 
• Answer Identification

• Annotation Task Design 
• Dataset Statistics 
• Quality Analysis

• Semantic Role Labeling 
• Our Method: QA-SRL
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• Generalize to non-verbal predicates:

• Generalize to other languages:

他们 今年 涨了 房租 。

Q: 房租 什么 时候 涨了 ？
they this year increased the rent

rent      when       increased
A:  今年

this year

S: The rent increase came as a shock to us .

Q: Who was shocked ? A: us



Future Work: 
Automatic Question Suggestion
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Automatic 
Question 
Generator

Annotated 
QA Pairs

“I can ’t believe they increased the rent by so much .”
Given new sentence and verb:

training
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Automatic 
Question 
Generator

Annotated 
QA Pairs

“I can ’t believe they increased the rent by so much .”
Given new sentence and verb:

training Who increased something ? 
What increased ? 
How did something increase ? 
When did someone increase ? 

suggest
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Given new sentence and verb:
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Human 
Annotators
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suggest
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Automatic 
Question 
Generator

Annotated 
QA Pairs

“I can ’t believe they increased the rent by so much .”
Given new sentence and verb:

training

Who increased something? -  they 
What increased? - the rent 
How did something increase? - by so much
When did someone increase? - unanswerable

Human 
Annotators

write answers

Who increased something ? 
What increased ? 
How did something increase ? 
When did someone increase ? 

suggest



Future Work: Training a Joint Parser
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Joint A* CCG Parsing and Semantic Role Labeling, Lewis et al., 
EMNLP-2015. (Presentation: Sunday 6B)

• Use question-answer pairs to train a joint parser, to 
improve on both syntax and semantics 

• Combine with other SRL data, i.e. PropBank, FrameNet



Contributions
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• Introduced question-answer driven semantic role 
labeling (QA-SRL).

• High quality QA annotation with a lightweight template-
based scheme. 

• Two new QA-SRL learning baselines: question 
generation and answer identification. 

• Releasing data and annotation tool - https://
dada.cs.washington.edu/qasrl/

https://dada.cs.washington.edu/qasrl/
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Thank You! 
Questions?

QA-SRL Project Page: 
https://dada.cs.washington.edu/qasrl/

Predicate Answer

Wh-Question
No Frame Inventory!

https://dada.cs.washington.edu/qasrl/

