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COMBINING THE TWO
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EXPERIMENT SET TING

|0 Languages (CoNLL-X and CoNLL-2007/)

|00 Randomly sampled labeled sentences
Averaged over |0 sampling runs

Universal POS Tags (Petrov et al. 201 |')
Second Order CRF Model f(y:, yi—1,v:—2,%)
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Code: https://code.google.com/p/pr-graph/
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