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Our key hypothesis: 
Anyone who understands the meaning of a sentence  

should be able to correct parser mistakes. 

Pat ate the cake on the table that I baked last night.

How can we use this kind of human knowledge?

✖

Parser: I baked table
Human understanding: I baked cake

✔
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Pat ate the cake on the table that I baked last night.

bakedI

I baked

Q: What did someone bake?

table
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the n-best list 1. table     2. cake
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Scope of this Work

• Target core arguments of verbal predicates. 
• Use human judgments to fix parser mistakes at 

decoding time. 
• Use CCG (Combinatory Categorial Grammar) as 

the underlying syntactic formalism. 
• Use the Neural CCG Parser (Lewis et al. 2016) as 

our base parser.
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Our Annotation Task
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• Annotators are instructed to choose options that 
“explicitly and directly” answer the question. 

• Multiple answers are allowed. 
• 5 judgements per query.

* Crowdsourcing platform: https://www.crowdflower.com/.

https://www.crowdflower.com/


Data Collection with Crowdsourcing

10

0

750

1500

2250

3000

CCG-Dev CCG-Test Bioinfer

680

2,511
1,904

360

1,460
1,155

500

2,407
1,913

Sentences Queried Sentences Queries

• All developments are done on CCG-Dev only. 
• Less than 2 queries per sentence, for about 60% of the sentences. 
• Cost: 46 cents per query.
• Speed: 200 queries per hour.

(Hockenmaier and Steedman, 2007) (Pyysalo et al., 2007)



Inter-Annotator Agreement
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• Agreement is computed only 
for matching the exact set of 
answers. i.e. (A, B) and (B) are 
considered disagreement. 

• Unanimous agreement for over 
40% of the queries. 

• Over 90% absolute majority.
0

0.25

0.5

0.75

1

CCG-Dev CCG-Test Bioinfer

0.190.230.18

0.27
0.28

0.29

0.48
0.40

0.48

5-Agreed 4-Agreed
3-Agreed
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Putting our hypothesis to the test: 
How well does annotators’ human understanding

align with the gold syntax?

• Successes: Long-range attachment decisions 
• Challenges: Syntax-semantics mismatch 
• Use heuristics to fix the mismatch problems at re-

parsing time.
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that sells products under the Purepac label.

What sells something?
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a New Jersey-based pharmaceuticals concern
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• Syntax-semantics mismatch 
• Also happens with pronouns and appositives. 
• Some cases are heuristically fixed during reparsing.
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Challenge - Headedness

15

Timex had requested duty-free treatment for many types of watches, 
covered by 58 different U.S. tariff classifications.

What would be covered ?

Timex

duty-free treatment

None of the above.

• Annotators tend to struggle with headedness. 
• We add “disjunctive constraint”, forcing the re-parser to 

produce either of the two dependencies.

many types of watches

watches

0

0

0

2

3



Re-Parsing with Crowdsourced Constraints
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• Penalizes parses that disagree with crowdsourced judgments. 

• Constraints are decomposed by dependencies. 

• Thresholds and penalties are tuned on CCG-Dev.

Q1: What did someone bake? 
votes(cake) = 4
votes(table) = 1

votes(None of the above) = 0

ynew =argmax

y
base parser score(y)

�T+ ⇥ 1(baked ! cake 2 y)

�T� ⇥ 1(baked ! table 2 y)
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• Modest improvement due to syntax-semantics mismatch. 
• Larger improvement on out-of-domain data.

Active, Ser133-phosphorylated 
CREB effects transcription of 
CRE-dependent genes via  

interaction with the 265-kDa  …
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87.5
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CCG-Test On Changed Sentences (10%)

Lewis'16 HITL

85.90

88.30

84.2

88.1

• Modified parse trees for about 10% of the sentences after 
incorporating human judgments. 

• Larger gain on changed sentences. 
• Changed sentences are “more difficult” on average.



Future Work
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• Improve coverage by adding new types of questions: 

• Modifiers: when, where, why … 

• PP attachments with natural language queries. 

• Bootstrap a parser in a low-resource domain. 

• Focus on downstream applications (e.g. Information 
Extraction).



Contributions
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• Use non-expert annotation to improve a parser. 

• Crowdsourced Q/A data for further exploration of active 
learning/reinforcement learning techniques. 

• Code and data available online: https://github.com/
luheng/hitl_parsing

https://github.com/luheng/hitl_parsing
https://github.com/luheng/hitl_parsing


Thank You!
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Code and Data: 
https://github.com/luheng/hitl_parsing

🤔


