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• Find out “who did what to whom” in text. 
• Given predicate, identify arguments and label them.
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The robot broke my favorite mug with a wrench.
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The Proposition Bank (PropBank)

Core roles:  
Verb-specific roles (ARG0-

ARG5) defined in frame files

Frame: break.01

role description
ARG0 breaker
ARG1 thing broken

ARG2 instrument

ARG3 pieces

ARG4 broken away 
from what?

Frame: buy.01

role description
ARG0 buyer
ARG1 thing bough

ARG2 seller

ARG3 price paid

ARG4 benefactive

role description
TMP temporal
LOC location
MNR manner
DIR direction
CAU cause
PRP purpose
…

Adjunct roles: 
 (ARGM-) shared 

across verbs
Annotated on top of the 
Penn Treebank Syntax

PropBank Annotation Guidelines, 
Bonial et al., 2010
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SRL is a hard problem …

• Over 10 years, F1 on the PropBank test set: 
79.4 (Punyakanok 2005) — 80.3 (FitzGerald 2015) 

• Many interesting challenges: 
Syntactic alternation 
Prepositional phrase attachment 
Long-range dependencies and common sense
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The cafe is playing my favorite song.
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subjects

objects

6

Syntactic Alternation PP Attachment Long-range Dependencies



I  eat  [pasta]  [with delight].
ARG0
eater

ARG1
meal

ARGM-MNR
manner
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Dependencies



I  eat  [pasta]  [with delight].
ARG0
eater

ARG1
meal

ARGM-MNR
manner

I  eat  [pasta with broccoli].
ARG0
eater

ARG1
meal

7

Syntactic 
Alternation Prepositional Phrase (PP) Attachment Long-range 

Dependencies
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We flew to Chicago.
ARG1

passenger
ARGM-GOL
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We flew to Chicago.
ARG1

passenger
ARGM-GOL

goal

We remember the nice view flying to Chicago.
ARG1

passenger
ARGM-GOL

goal

We remember John and Mary flying to Chicago.
ARG1

passenger
ARGM-GOL

goal

Syntactic Alternation PP Attachment Long-range Dependencies
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SRL is even harder for out-domain data …

“Dip chicken breasts into eggs to coat”

Active, Ser133-phosphorylated CREB effects 
transcription of CRE-dependent genes via 
interaction with the 265-kDa  …
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Long-term Plan for Improving SRL



Step 1: Collect more data for SRL 
— Question-Answer Driven Semantic Role Labeling (QA-SRL) 
— Human-in-the-Loop Parsing
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Intuition: Anyone who understands the 
meaning of a sentence should be able provide 
annotation for SRL.

First Step: Collect more (cheaper) SRL Data

Challenge: Complicated annotation process of 
traditional SRL.

Solution: Design a simpler annotation scheme!
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Last month, we saw the Grand Canyon flying to Chicago.

Given sentence and a verb: 
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Who was flying? we

Where did someone fly to? Chicago

When did someone fly? Last month

Last month, we saw the Grand Canyon flying to Chicago.

Given sentence and a verb: 

Step 1: Ask a question 
about the verb: 

Step 2: Answer with 
words in the sentence: 

Step 3: Repeat, write as many 
Q/A pairs as possible …

Stop until all Q/A 
pairs are exhausted.

Question-Answer Driven SRL (QA-SRL)
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Predicate Argument (Verbal) 
Predicate

Answer

Role Question

Question-Answer Driven SRL 
(QA-SRL)

Traditional SRL 
(PropBank)

Large Role Inventory No Role Inventory!

Comparing QA-SRL to PropBank
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Last month, we saw the Grand Canyon flying to Chicago.

Question-Answer Driven SRL (QA-SRL)

Who was flying?
Where did someone fly to?

When did someone fly?

QA-SRL

ARG1
ARGM-GOL

ARGM-TMP

PropBank SRL
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Last month, we saw the Grand Canyon flying to Chicago.

Question-Answer Driven SRL (QA-SRL)

Who was flying?
Where did someone fly to?

When did someone fly?

QA-SRL

ARG1
ARGM-GOL

ARGM-TMP

PropBank SRL

Non-expert annotated QA-SRL has about 
80% agreement with PropBank.
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— Neural Semantic Role Labeling (for PropBank SRL) 
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Step 3: SRL system for many domains 
      — Future work …
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— Question-Answer Driven Semantic Role Labeling (QA-SRL) 
— Human-in-the-Loop Parsing
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— Neural Semantic Role Labeling (for PropBank SRL) 
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The cats love hats .Input (sentence 
and predicate):

BIO output: B-ARG0 I-ARG0 B-V I-ARG1 O

Final SRL output: ARG0 V ARG1

(Begin,  Inside, Outside)  

SRL as BIO Tagging Problem



18

the cats love hats[ ] [ ] [V] [ ]

B-ARG0 0.4
I-ARG0 0.05
B-ARG1 0.5
I-ARG1 0.03

… …

B-ARG0 0.1
I-ARG0 0.5
B-ARG1 0.1
I-ARG1 0.2

… …

B-ARG0 0.001
I-ARG0 0.001
B-ARG1 0.001

… …
B-V 0.95

B-ARG0 0.1
I-ARG0 0.1
B-ARG1 0.7
I-ARG1 0.2

… …



18

the cats love hats[ ] [ ] [V] [ ]

B-ARG0 0.4
I-ARG0 0.05
B-ARG1 0.5
I-ARG1 0.03

… …

B-ARG0 0.1
I-ARG0 0.5
B-ARG1 0.1
I-ARG1 0.2

… …

B-ARG0 0.001
I-ARG0 0.001
B-ARG1 0.001

… …
B-V 0.95

B-ARG0 0.1
I-ARG0 0.1
B-ARG1 0.7
I-ARG1 0.2

… …

(1) Deep BiLSTM 
tagger



18

the cats love hats[ ] [ ] [V] [ ]

B-ARG0 0.4
I-ARG0 0.05
B-ARG1 0.5
I-ARG1 0.03

… …

B-ARG0 0.1
I-ARG0 0.5
B-ARG1 0.1
I-ARG1 0.2

… …

B-ARG0 0.001
I-ARG0 0.001
B-ARG1 0.001

… …
B-V 0.95

B-ARG0 0.1
I-ARG0 0.1
B-ARG1 0.7
I-ARG1 0.2

… …

(1) Deep BiLSTM 
tagger

(2) Highway 
connections



18

the cats love hats[ ] [ ] [V] [ ]

B-ARG0 0.4
I-ARG0 0.05
B-ARG1 0.5
I-ARG1 0.03

… …

B-ARG0 0.1
I-ARG0 0.5
B-ARG1 0.1
I-ARG1 0.2

… …

B-ARG0 0.001
I-ARG0 0.001
B-ARG1 0.001

… …
B-V 0.95

B-ARG0 0.1
I-ARG0 0.1
B-ARG1 0.7
I-ARG1 0.2

… …

(1) Deep BiLSTM 
tagger

(2) Highway 
connections

(3) Variational 
dropout



18

the cats love hats[ ] [ ] [V] [ ]

B-ARG0 0.4
I-ARG0 0.05
B-ARG1 0.5
I-ARG1 0.03

… …

B-ARG0 0.1
I-ARG0 0.5
B-ARG1 0.1
I-ARG1 0.2

… …

B-ARG0 0.001
I-ARG0 0.001
B-ARG1 0.001

… …
B-V 0.95

B-ARG0 0.1
I-ARG0 0.1
B-ARG1 0.7
I-ARG1 0.2

… …

(1) Deep BiLSTM 
tagger

(2) Highway 
connections

(4) Viterbi 
decoding with 

hard constraints

(3) Variational 
dropout
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the cats love hats[ ] [ ] [V] [ ]

B-ARG0 I-ARG0 B-V B-ARG1

Forward LSTM

Backward LSTM

Softmax

Word + Tag  
embeddings

Output
B-ARG0
I-ARG0

B-ARG1
O

0.175 0.35 0.525 0.7

0.03
0.1

0.7
0.1

argmax

Concatenate: 
100dim + 100dim

Predicate

Model - (1) Deep BiLSTM TaggerDeep BiLSTM Tagger Highway 
Connections

Variational 
Dropout

Viterbi Decoding w\ 
Hard Constraints



Grammar as a Foreign Language (Vinyals et al., 2014): 3 layers 
End-to-end Semantic Role Labeling (Zhou and Xu, 2015): 8 layers 

Google’s Neural Machine Translation (GNMT, Wu et al., 2016): 8 layers 

this work: 8 layers 

Deep Residual Learning for Image Recognition (He et al, 2016): 152 layers
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Model - (2) Highway Connections

Trend: Deeper models for higher accuracy

Deep BiLSTM 
Tagger Highway Connections Variational 

Dropout
Viterbi Decoding w\ 

Hard Constraints
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the cats love hats[ ] [ ] [V] [ ]

BiLSTM 
layers 1-2

BiLSTM 
layers 3-4

BiLSTM 
layers 5-6

increase 
expressive

power

harder to 
back-

propagate
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(harder to reimplement)
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Grammar as a Foreign Language (Vinyals et al., 2014): 3 layers 
End-to-end Semantic Role Labeling (Zhou and Xu, 2015): 8 layers 

Google’s Neural Machine Translation (GNMT, Wu et al., 2016): 8 layers 

this work: 8 layers 

Deep Residual Learning for Image Recognition (He et al, 2016): 152 layers

22

use shortcut connections between 
layers (“highway” or “residual”)

use different learning 
rates for different layers 
(harder to reimplement)

Model - (2) Highway ConnectionsDeep BiLSTM 
Tagger Highway Connections Variational 

Dropout
Viterbi Decoding w\ 

Hard Constraints
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input from the previous layer

recurrent input 

from the prev. 
timestep

output to the next layer

References: 
Deep Residual Networks, Kaiming He, ICML 2016 Tutorial 

Training Very Deep Networks, Srivastava et al., 2015

Non-linearity

ht shortcut

ht�1 F(ct�1,ht�1,xt)

residual net
ht + xt

gated highway network:

rt � ht + (1� rt) � xt

rt = �(f(ht�1,xt))

xt

xt

new output:

Model - (2) Highway ConnectionsDeep BiLSTM 
Tagger Highway Connections Variational 

Dropout
Viterbi Decoding w\ 

Hard Constraints
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Model - (3) Variational DropoutDeep BiLSTM 
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Traditionally, dropout masks are only 
applied to vertical connections. 

Model - (3) Variational DropoutDeep BiLSTM 
Tagger

Highway 
Connections Variational Dropout Viterbi Decoding w\ 

Hard Constraints



24

the cats love[ ] [ ] [V]

Traditionally, dropout masks are only 
applied to vertical connections. 

Applying dropout to recurrent connections 
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the cats love[ ] [ ] [V]

Traditionally, dropout masks are only 
applied to vertical connections. 

Variational dropout: Reuse the same 
dropout mask for each timestep. 
Gal and Ghahramani, 2016 

Applying dropout to recurrent connections 
causes too much noise amplification.

Model - (3) Variational DropoutDeep BiLSTM 
Tagger

Highway 
Connections Variational Dropout Viterbi Decoding w\ 

Hard Constraints
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BiLSTM layers …
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Other Implementation Details …
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• 8 layer BiLSTMs with 300D hidden layers. 

• 100D GloVe embeddings, updated during training. 

• Orthonormal initialization for LSTM weight 
matrices (Saxe et al., 2013) 

• 5 model ensemble with product-of-experts 
(Hinton 2002) 

• Trained for 500 epochs.



Datasets
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CoNLL-2005
(PropBank)

CoNLL-2012
(OntoNotes)

Size 40k sentences 140k sentences

Domains newswire

• telephone conversations 
• newswire 
• newsgroups 
• broadcast news 
• broadcast conversation 
• weblogs

Annotated 
predicates Verbs Added some nominal 

predicates 
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Shallow models benefit more 
from constrained decoding.

Performance increases as 
model goes deeper. Biggest 
jump from 2 to 4 layer.
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Full model No highway No orthonormal init. No dropout

Without dropout, model overfits at ~300 epochs.

Without initialization, the deep model 
learns very slowly  
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F1

60
65
70
75
80
85
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Ours* Ours Zhou FitzGerald* Täckström Pradhan

77.579.480.281.581.783.4

1. What’s in the remaining 17%? When does the model still struggle?
2. What are deeper models good at?
3. BiLSTM-based models are very accurate even without syntax. But 

can we conclude syntax is no longer useful in SRL?
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Question (1): When does the model make mistakes?



33

Question (1): When does the model make mistakes?

Analysis
— Error breakdown with oracle transformation 
— E.g. tease apart labeling errors and boundary errors 
— Link the error types to known linguistic phenomena    
(e.g. pp attachment)
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“After many attempts to find a reliable test to distinguish between arguments and adjuncts, we 
abandoned structurally marking this difference.”

—The Penn Treebank: An Overview (Taylor et al., 2003)
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Question (1): When does the model make mistakes?

Analysis
— Error breakdown with oracle transformation 
— E.g. tease apart labeling errors and boundary errors 
— Link the error types to known linguistic phenomena    
(e.g. pp attachment)
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Question (1): When does the model make mistakes?

Takeaway
— Traditionally hard tasks, such as argument-adjunct 
distinction and PP attachment decisions are still 
challenging! 
— Use external information to improve PP attachment.

Analysis
— Error breakdown with oracle transformation 
— E.g. tease apart labeling errors and boundary errors 
— Link the error types to known linguistic phenomena    
(e.g. pp attachment)
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Question (2): What are deeper models good at?

Analysis
— Long-range dependencies: model performance on 
arguments that are far away from the predicates. 
— Structural consistency: amount of inconsistent BIO tag 
pairs in greedy prediction.
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Question (3): Can syntax still help SRL?

Recap
— PropBank SRL is annotated on top of the PTB syntax.  
— More than 98% of the gold SRL spans are syntactic constituents.  
Analysis
— At decoding time, make predicted argument spans agree with 
given syntactic structure. 
— See if SRL performance increases.
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[The cats] love [hats and the dogs] love bananas. 
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• Constraints are not locally decomposable. 
• A* search (Lewis and Steedman 2014) for a sequence with highest score.
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Charniak: A maximum-entropy-inspired parser, Charniak, 2000 
Choe: Parsing as language modeling, Choe and Charniak, 2016 

(State of the art)
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Takeaway
— Modest gain observed with predicted syntax. 
— Joint training could bring more improvement.
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Contributions (Neural SRL)

• New state-of-the-art deep network for end-to-
end SRL.  

• Code and models will be publicly available at: 
https://github.com/luheng/deep_srl 

• In-depth error analysis indicating where the 
models work well and where they still struggle. 

• Syntax-based experiments pointing towards 
directions for future improvements.

https://github.com/luheng/deep_srl
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Long-term Plan for Improving SRL

Step 3: SRL system for many domains 
      — Future work …

Step 1: Collect more data for SRL 
— Question-Answer Driven Semantic Role Labeling (QA-SRL) 
— Human-in-the-Loop Parsing

Step 2: Build accurate SRL model                 
— Neural Semantic Role Labeling (for PropBank SRL) 

✓
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Thanks!

Frame: break.01

role description
ARG0 breaker
ARG1 thing broken

ARG2 instrument

ARG3 pieces

ARG4 broken away 
from what?

Model AnalysisProblem

Code will be available at: https://github.com/luheng/deep_srl

https://github.com/luheng/deep_srl

